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Abstract

A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homo-
geneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola–
Kirchhoff stress field in three-dimensional elasticity. Since Maxwell�s sets appear in the neighborhood of singularities
higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant
strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress–strain
laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any
anisotropic material and three-dimensional problems.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase deformations in solid materials have recently received much attention. Various models have
been provided (Ericksen, 1991; Truskinovsky and Zanzotto, 1996; Knowles and Sternberg, 1978; Abey-
aratne, 1980) for studying the behavior of twinning in crystals (Pitteri and Zanzotto, 2003) austenite–
martensite transformations in certain alloys that occur in shape-memory alloys (Khatchaturyan, 1983)
and ferroelastic materials (Salze, 1990).

Knowles and Sternberg (1978) and Knowles and Sternberg (1977) attribute the emergence of discontin-
uous strain fields to the loss of ellipticity. Furthermore, some conditions have been derived for the devel-
opment of piece-wise homogeneous deformations in compressible materials (Rosakis, 1990; Rosakis and
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Jiang, 1993). Ericksen (1991), adopting globally stable criteria. Fosdick and MacSithigh (1986) have defined
conditions for the emergence of two-phase deformations in incompressible materials. Further, Fosdick and
MacSithigh (1991) study the problem in inextensible materials.

However, following the existing theories, the study of the emergence of stepwise homogeneous strain,
under uniform stress in any anisotropic material, with possible multiple constraints, is a quite hard prob-
lem. In many cases the various problems are reduced to one-dimensional ones with fictitious constitutive
laws. The present work has the ambition to introduce a new technique for the solution of a two-phase prob-
lem of a initially homogeneous deformation using singularity theory. The procedure may be extended to
any anisotropic material with possible existence of incompressibility or inextensibility constraints. The idea
is quite simple.

First the stability of homogeneous deformations is studied and the critical states (Vainberg and Tenogin,
1974; Thompson and Hunt, 1973) are located satisfying a constraint required by a possible jumping of the
displacement gradient (James, 1981; Gurtin, 1983). It turns out that this constraint depends only on the
kernel of the critical state. Classification of the various singularities (Gibson, 1979; Thom, 1975; Zeeman,
1977; Gilmore, 1981) of the total potential energy for homogeneous deformations has already been per-
formed (Lazopoulos and Markatis, 1996). It is well known that globally stable states are developed on
Maxwell�s sets in the neighborhood of the various singularities (Gilmore, 1981). Furthermore Maxwell�s
sets are developed in the neighborhood of singularities higher than the fold. Therefore the existence of a
cusp is a sufficient condition for the emergence of discontinuous strain fields. Using the unfolding in the
neighborhood of the cusp, the discontinuous field is completely defined along with the phase boundary.
The procedure is quite general. Simple formulae will be found. Direct results handily may be derived, using
computerized algebra packs, such as Mathematica (Wolfram, 1996) or Maple. The present method is re-
stricted only to homogeneous deformations anisotropic compressible materials under any kind of suitable
stress traction. No restrictions are imposed upon the material and the constitutive laws either. Conventional
similar problems in incompressible materials with fictitious constitutive laws have been studied by De
Tommasi et al. (2001) and DD� Ambrosio et al. (2003).

First the one-dimensional (bar) problem is studied, where the two phase strain field under uni-axial
strain is described with the help of Maxwell�s set in the neighborhood of the cusp singularity. Next the
three-dimensional problem is analyzed. The cusp singularity is located, in the class of incremental deforma-
tions satisfying the jumping condition. The corresponding Maxwell�s set helps in defining two global min-
ima describing the piece-wise homogeneous strain field under homogeneous stress.

The theory is implemented in a simple shearing problem of Blatz and Ko (1962) material explaining the
various steps. Although the material for the application is isotropic, the method works for any anisotropic
homogeneous material and three-dimensional problems as well. Similar materials have been invoked by
Knowles and Sternberg (1978, 1977); Mathematica computerized algebra pack, has been applied for deriv-
ing the various formulae and performing the computing as well.
2. Discontinuous strain fields in the one-dimensional case

Ericksen (1991, 1975) introduced the coexistence of phases phenomena in solids, developing globally sta-
ble equilibrium configurations. Adapting, likewise, globally (Maxwell) stability criteria, two-phase equilib-
rium configurations were emerged allowing for continuous displacement but discontinuous strain fields.
Ericksen (1991, 1975), in fact, adopted, non-convex strain energy density function W(u 0(x)) for the uni-axial
tension equilibrium deformation of a bar, where u(x) is the axial displacement and ð0Þ ¼ dðÞ

dx as usual, see
Fig. 1. Therefore, the potential energy function per unit length of the bar is defined by,
V ¼ W ðu0ðxÞÞ � ru0ðxÞ ð1Þ



Fig. 1. The non-convex stress–strain diagram.
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where, r is the first Piola–Kirchhoff axial stress. The variational problem for the functional V in the C0 class
of displacements u(x), i.e. continuous displacement with discontinuous strains, is given by,
r ¼ oW
ou0

ð2Þ
and the corner, Erdmann–Weierstrass condition (Gelfand and Fomin, 1963) at the point x0 of
discontinuity,
oW
ou0

� �����
x0

¼ 0 ð3Þ

½W � ru0�jx0
¼ 0 ð4Þ
where, ½:� ¼ ð:Þjx0þ
� ð:Þjx0�

denotes the jumping at the point of discontinuity as usual. Equilibrium Eq. (2)
and the corner conditions, Eqs. (3) and (4), reveal non-unique globally stable equilibrium deformations if
the Piola–Kirchhoff stress r reaches a value rM, that is called Maxwell�s, value intersecting the stress–strain
curve and cutting off equal areas A and B, see Fig. 2. Therefore the bar is allowed to develop piece-wise
constant strain fields, exhibiting the coexistence of phases phenomenon; Sometimes the distribution is quite
fine emerging the twinning of crystal phenomena (Ball and James, 1987; Pitteri and Zanzotto, 2003).

Nevertheless just the same problem may be studied in the context of singularity theory. Since the sim-
plest (lowest) singularity including Maxwell�s sets is the cusp catastrophe (Gilmore, 1981) the present dis-
cussion is limited to that singularity. Higher singularities include anyway Maxwell�s sets and may be useful
Fig. 2. Maxwell�s stress and strains.
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for many other problems with many (more than two) global minima. Indeed, the total potential energy V is
expressed in this case by,
V ¼ s4 þ as2 þ bs ð5Þ

Just exploring the control space (a,b) of the cusp singularity, see Fig. 3, the stable regions A1 with unique

minimum of the total energy function are prescribed by the fold curve A2 where multiple local extremals are
shown up. Further, the fold curve is described by the relation,
8a3 þ 27b2 ¼ 0 ð6Þ

This is, also, the critical curve for locally stable transitions. Nevertheless, the set for globally stable tran-

sitions, called Maxwell�s set, is the semi-axis in the control space with a < 0, see Fig. 3. In that case equi-
librium states with,
n ¼ �
ffiffiffiffiffiffiffiffiffiffi
� 2a

3

r
ð7Þ
yield global minima of the total energy function. Consequently, if the strain of the bar is equal to the con-
stant u00 when the extension stress is equal to r0 and the stress is increased by dr, then the strain changes by
du 0(x). Let us assume that the strain energy density function in the neighborhood of the equilibrium state
ðu00; r0Þ is defined by a cusp unfolding,
W ðu0ðxÞÞ ¼ du0ðxÞ4 � a0du0ðxÞ2 þ b0du0ðxÞ þ W ðu00Þ ð8Þ

with a0,b0 > 0. Consequently Maxwell�s sets will be met in the neighborhood of the cusp if
r0 ¼ b0 ð9Þ

In this case
du0ðxÞ ¼ �
ffiffiffiffiffiffiffi
2a0

3

r

and the two phases are defined by,
u0ðxÞ ¼ u00 �
ffiffiffiffiffiffiffi
2a0

3

r
ð10Þ
Therefore, there are regions of piece-wise constant distributed strain in the bar, sometimes so fine that mac-
roscopically are viewed as a third strain (Ball and James, 1987).
Fig. 3. Geometry of the cusp control space.
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3. The cusp condition in compressible homogeneous deformations

The method, presented in the preceding section, will be extended into a three-dimensional case. Indeed,
piece-wise homogeneous deformations, under the action of surface traction, will be studied. Transferring
the simple preceding method into the three-dimensional case is not a simple matter. Two major problems
are shown up in that case. First, the location of the cusp singularities of the total potential energy function
with many independent variables and secondly, the compatibility of the deformation gradients for the
emergence of the jumping for the strain. The interaction of those two factors will be studied below.

Lazopoulos and Markatis (1996), have recently presented the classification of the singularities of the po-
tential energy function for homogeneous deformations of any elastic material with (or without) the inter-
action of any (multiple) constraints. Classification of the simple singularities (cuspoids) will be performed in
the class of deformations, satisfying the deformation gradient jump compatibility conditions. Consider an
anisotropic hyperelastic material under homogeneous deformation defined by the displacement vector,
u ¼ ðu1; u2; u3Þ ð11Þ

The non-linear strains are expressed by (Green and Atkins, 1970),
eij ¼ 1
2
ðuij þ uji þ uriurjÞ ð12Þ
with uij ¼ oui
oxj

. Likewise, the strain energy density W is defined as a function of the strains,
W ¼ W ðeijÞ ð13Þ

Since the deformation is homogeneous, the potential energy density function V is expressed by,
V ¼ W ðeijÞ � tijuij ð14Þ

where, tij are the components of the first Piola–Kirchhoff stress tensor T, referred to the unstressed reference
placement (Gurtin, 1981). In addition the deformation gradient is defined by,
F ij ¼ dij þ uij ð15Þ

It is evident that the total potential density function V is a function of nine components of the displacement
gradient uij. Nevertheless, the conservation of rotational momentum requiring,
TF T ¼ FT T ð16Þ

restricts the number of variables from nine to six. In case the system (16) is solvable, it may be solved
for three variables, let us say, u21, ,u32,u31 and substituting into the potential energy density function V

we get,
V ¼ V ðqi; tkÞ ¼ V ðuab; tcdÞ; i; k ¼ 1; . . . ; 6; a; b; c; d ¼ 1; 2; 3 ð17Þ

where,
q1 ¼ u11; q2 ¼ u22; q3 ¼ u33; q4 ¼ u12; q5 ¼ u13; q6 ¼ u23 ð18aÞ

and ti, i = 1, . . ., 9 with,
t1 ¼ t11; t2 ¼ t22; t3 ¼ t33; t4 ¼ t12; t5 ¼ t13; t6 ¼ t23; t7 ¼ t21; t8 ¼ t31; t9 ¼ t32 ð18bÞ

Hence,
rV ¼ V iðqj; tkÞ ¼
oV
oqi

¼ 0; i; j ¼ 1; . . . ; 6; k ¼ 1; . . . ; 9 ð19Þ
Let us consider a large equilibrium deformation ðq0
i ; t

0
kÞ satisfying the equilibrium Eq. (19). Recalling the

procedure of small deformations superposed upon large ones, the problem is posed as follows:
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Perturbing the controlling parameters t0
j so that,
ta ¼ t0
a þ dta ð20Þ
with jdtaj � 1, find the new equilibrium strains vi of the system with,
qi ¼ q0
i þ dqi ð21Þ
in the neighborhood of equilibrium strains q0
i .

Considering,
L ¼ o2V
oqioqj

�����
�����
q¼q0

ð22Þ
and following Lazopoulos and Markatis (1996), multiple solutions for the homogeneous deformations may
be located when the critical condition,
det L ¼ 0 ð23Þ

Applying principles of branching analysis (Vainberg and Tenogin, 1974; Lazopoulos and Markatis,

1996), the vector dq = (dqi), i = 1, . . ., 6 may be defined by,
dq ¼ ndxþ oðnÞ ð24Þ

where, dx is a solution to the linear equation,
Ldx ¼ 0 ð25Þ

and n is defined by the higher order terms of the equilibrium equation, Eq. (19). It is denoted that the sin-
gular operator L denotes loss of strong ellipticity of the stability operator, Eq. (22), see Knowles and Stern-
berg (1978) for further details.

Moreover, the followed procedure, up to this point, deals with second order transitions, according to
Landau et al. (1980) classification. In this case no two-phase deformations are allowed. However, incorpo-
ration of the strain jumping conditions introduces additional constraints. Let us point out that the compat-
ibility of the gradient of deformation F jumping condition is expressed by the existence of a unit vector f

with zero jumping deformation, i.e.
½F� � f ¼ ðFþ � F�Þ � f ¼ 0 ð26Þ
Recalling Eqs. (15)–(17), (21) and (26) the gradient of deformation for the piece-wise homogeneous
deformation is expressed by,
F� ¼ F0 þ n�F1 ð27Þ
where n+ and n� are n parameters of Eq. (24), defined by the higher order terms of the governing equilib-
rium Eq. (19) and F0 corresponding to the gradient of deformation in the large equilibrium placement. Fur-
thermore, F1 depends completely on the kernel dx of the operator L, defined by Eq. (22). Indeed,
F1 ¼
dx1 dx4 dx5

dy1 dx2 dx6

dy2 dy3 dx3

�������
������� ð28Þ
where dyi, i = 1,2,3 are linear combinations of dxj, j = 1, . . . ,6. That is evident recalling Eq. (16) of the
conservation of the rotational momentum. Thus, the deformation jumping condition, Eq. (26), requires
for two non-zero f vectors (the phase boundary plane),
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dx1

dy1

¼ dx4

dx2

¼ dx5

dx6

dx1

dy2

¼ dx4

dy3

¼ dx5

dx3

ð29Þ
Eqs. (29) are the jumping compatibility conditions expressed exclusively by the components of the L oper-
ator. Hence, the existence of a non-zero kernel dx of the operator L, satisfying further the deformation gra-
dient jumping conditions, is a necessary but not sufficient condition for the two-phase deformation.
Recalling the discussion of the emergence of discontinuous strain fields in the one-dimensional case, pre-
sented in the preceding section, two phase deformations will be developed in the neighborhood of the cusp
singularity, since the cusp is the lowest order cuspoid including Maxwell�s sets, required for globally stable
transitions.

The existence of a cusp singularity at a point q0 requires the following conditions:

• (a) The equilibrium condition:
rV ¼ oV
oqi

����
q0

¼ 0 ð30Þ
• (b) The critical condition:
det L ¼ 0; or Ldx ¼ 0; dx 6¼ 0: ð31Þ

• (c) The cusp condition:
o
3V

oqioqkoql

����
q0

dxi dxk dxl ¼ 0 ð32Þ
which is equivalent to the existence of a six-dimensional vector bk, k = 1, . . ., 6 satisfying the equation,
o3V
oqioqkoql

����
q0

dxk dxl þ
o2V

oqioqk

����
q0

bk ¼ 0 ð33Þ
In this case, the total potential energy density in the neighborhood of the cusp singularity is expressed by,
V ¼ n4

4!

o
4V

oqioqkoqloqr

����
q0

i

dxi dxk dxl dxx þ
o

3V
oqioqjoqk

�����
q0

i

dxi dxjbk

0
@

1
A

þ n2

2

o
3V

oqioqkota

����
q0

i

dxi dxk dta þ
o

3V
oqioqkolb

����
q0

i

dxi dxk dlb

 !

þ n
o2V

oqiota

����
q0

i

dxi dta þ
o2V

oqiolb

����
q0

i

dxi dlb

 !
ð34Þ
where, ta is the vector of the forcing (traction) parameters and lb are the constant material parameters.
Thus, the problem has already been reduced to the one-dimensional case and we repeat just the same

procedure as in the preceding chapter. The unfolding in the cusp singularity is given by,
V ¼ n4 � a0n
2 þ b0n; a0 > 0 ð35Þ
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and the two-phase deformation is defined in Maxwell�s set with b0 = 0 and
n� ¼
ffiffiffiffiffiffiffi
2a0

3

r
ð36Þ
Hence, the deformation gradients are expressed by,
F� ¼ F0 þ n�F1 ð37Þ

Let us recall that the phase boundary is defined by the unit vectors f of Eq. (26). Further, it is proved that

the stress tensor is the same at the two phases. Indeed, the first Piola–Kirchhoff stress tensor is equal to,
TðFÞ ¼ oW
oF

ð38Þ
Hence,
TðF�Þ ¼ oW
oF

����
n¼0

þ o
2W

oF2

����
n¼0

n�F1 þ
1

2

o
3W

oF3

����
n¼0

n2F2
1 þ oðn2Þ ð39Þ
Since,
Ldx ¼ o2W

oF2

����
n¼0

� F1 ¼ 0 ð40Þ
Eq. (53) reveals that
Tþ ¼ T� þ oðn2Þ ð41Þ

Therefore, Eq. (41) covers the equilibrium requirement of the same stress vector at the two phases of the
phase boundary. In addition, the total potential energy density function is the same at both phases, because
on Maxwell�s sets
V þ ¼ V � ð42Þ

Recalling Eq. (14) the Maxwell condition see Gurtin (1983)
W þ � W � ¼ T�ðFþ � F�Þ ð43Þ

is revealed.
4. Application

Although the procedure is quite general and may be applied to three-dimensional problems and non-iso-
tropic as well, the present application will be restricted to a plane shear problem. The simple problem has
been selected just to show the various steps of the method with clarity.

The chosen compressible material is a specific (Blatz and Ko, 1962) material with strain energy density
function,
W ðI1; JÞ ¼ I1f ðJÞ þ gðJÞ ð44Þ

where, I1 is the first strain invariant and J the determinant of the gradient deformation. Indeed,
I1 ¼ ð1þ u11Þ2 þ u2
21 þ u2

12 þ ð1þ u22Þ2 ð45Þ

J ¼ ðð1þ u11Þ2 þ u2
21Þðu2

12 þ ð1þ u22Þ2Þ � ðu2
12ð1þ u11Þ þ u21ð1þ u22ÞÞ2

n o1=2

ð46Þ
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with
f ðJÞ ¼ J�2 and gðJÞ ¼ aJ 2 þ bJ�1=2 þ c ð47Þ
Let us notice that no specific difficulty exists in considering any anisotropic strain energy density function.
The procedure is just the same.

Since W(I1,J) has to satisfy zero values and zero stresses at the reference placement, the following rela-
tions are valid, see Knowles and Sternberg (1978).
2f ð1Þ þ gð1Þ ¼ 0

2f ð1Þ þ f 0ð1Þ þ g0ð1Þ ¼ 0
ð48Þ
Hence the function g should be,
gðJÞ ¼ aJ 2 þ 4ð�1þ aÞffiffiffi
J
p þ 2� 5a ð49Þ
The problem of the initial simple shear in the x1 direction will be discussed. The emergence of discontinuous
deformation gradients will be exhibited and the piece-wise constant strain field will be described. Recalling
the strain energy density function
W ðI1; JÞ ¼ I1J�2 þ aJ 2 þ 4ð�1þ aÞffiffiffi
J
p þ 2� 5a ð50Þ
the simple shear with the strain components,
u11 ¼ u21 ¼ u22 ¼ 0

u12 ¼ k
ð51Þ
yields the first Piola–Kirchhoff stress components,
t11 ¼ t22 ¼ 4a� 2ð2þ k2Þ
t12 ¼ 2k

t21 ¼ 2kð3� 2aþ k2Þ
ð52Þ
Furthermore, the four strain components are not independent. The relations expressing the conservation of
the rotational momentum, Eqs. (16), yield,
u11 ¼ �1þ ðt11u21 þ t12ð1þ u22Þ � t22u12Þ=t21 ¼
�k3 � 2ð�1þ aÞðu12 � u21Þ þ kð�2þ 2aþ u22Þ

kð3� 2aþ k2Þ
ð53Þ
Let us recall the density of the total potential energy for this homogeneous deformation is equal to:
V ¼ W � t11u11 � t12u12 � t21u21 � t22u22 ð54Þ

Since the problem of the initial simple shear is discussed, we try to locate the critical point where the oper-
ator L, Eq. (22), becomes singular. Recalling Eq. (54), the total energy density V depends on the three strain
components u11,u21,u22, i.e.,
V ¼ V ðu12; u21; u22Þ ð55Þ
Since the pre-critical plane shear deformation is described by Eqs. (51), the post-critical equilibrium path
will be described by,
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u12 ¼ k þ nx1

u21 ¼ nx2

u22 ¼ nx3

ð56Þ
where, jnj � 1. Yet the total potential energy density V(u12,u21,u22) is expanded around the equilibrium
state with strains (u12,u21,u22) = (k, 0,0). Hence,
V ðu12; u21; u22Þ ¼ V 0 þ nV a þ
n2

2!
V b þ

n3

3!
V c þ

n4

4!
V d þ oðn4Þ ð57Þ
The critical strains are defined by the zero second order terms,
V b ¼ 0 ð58Þ

Furthermore, the cusp condition requires zero third order terms, i.e.,
V c ¼ 0 ð59Þ

Likewise, the involved deformation gradient jumping condition, Eq. (29), is expressed in the present case
by,
u11u22 � ðu12 � kÞu21 ¼ 0 ð60Þ

Due to conservation of rotational momentum, Eq. (16), u11 depends on the other strain coordinates, Eq.

(58). Hence recalling the expansion of the strains around the critical point, Eqs(56), the jumping of the
strain compatibility condition, Eq. (60), yields,
�k3x1x2 � 2ð�1þ aÞðx1 � x2Þx3 þ k2ðx1 � x2Þx3 þ kðð�3þ 2aÞx1x2 þ x2
3Þ ¼ 0 ð61Þ
For (x1,x2,x3) define a direction vector, it may be considered x3 = 1. In this case Eq. (61) may be solved
with respect to x2,
x2 ¼
�k � 2x1 þ 2ax1 � k2x1

2� 2aþ k2 þ 3kx1 � 2akx1 þ k3x1

ð62Þ
with x3 = 1 and x2 given by Eq. (62). The solution of Eqs. (58), (59) yields the critical aandk. The compo-
nent x1 is also defined by the solution of the system of Eqs. (58) and (59). Using numerical methods with
computerized algebra packs, see Mathematica (Wolfram, 1996) the critical x1,a,k (the x0

1; a
0; k0) satisfying

Eqs. (58) and (59) have been found equal to,
x0
1 ¼ 1:30; a0 ¼ 3:442; and k0 ¼ 2:617 ð63Þ
Let us remind here that (x1,x2,x3) are the components of the kernel incremental deformation gradient cor-
responding to the (u12,u21,u22) components, see Eqs. (56).

Recall that the parameter a represents a constitutive parameter, whereas k denotes the shearing. Let us
consider incremental values of the controlling parameters, a and k, i.e.,
a ¼ a0 þ da

k ¼ k0 þ dk
ð64Þ
In addition, the computation of the total potential energy, Eq. (34), in the neighborhood of the cusp sin-
gularity requires the definition of the vector bi,i = 1,3 introducing second order expansion terms. In the
present case,
b1 ¼ 1:43; b3 ¼ 1 ð65Þ
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and the total potential energy density has been computed and has found equal to,
V ¼ 3:718n4 � 0:222dkn2 þ ð1:75daþ 0:252dkÞn ¼ 0 ð66Þ
Consequently, the problem has been reduced to the one-dimensional case that has already been de-
scribed in the Section 2. Applying the procedure on global minimization for the one-dimensional case, glo-
bal minima exist when the n coefficient of the total potential, Eq. (66), becomes zero, i.e.
1:75daþ 0:252dk ¼ 0 ð67Þ

because the controlling parameters, in that case, are included in Maxwell�s set.

Therefore, in the increase dk defined by,
dk ¼ �6:9da ð68Þ

the equilibrium equation yields,
dV
dn
¼ 14:872n3 � 2ð0:222dkÞn ¼ 0 ð69Þ
with solutions,
n ¼ 0; n ¼ �0:173dk1=2 ð70Þ

Recalling Eq. (62), the critical x2 may be computed and in fact,
x0
2 ¼ 0:429 ð71Þ
Hence, see Eq. (56),
u11 ¼ 0:56n

u12 ¼ 2:62þ 1:3n

u21 ¼ 0:43n

u22 ¼ n

ð72Þ
where, n is defined by Eq. (69). Besides, the direction of the phase boundary may be defined by the incre-
mental deformation gradient,
F1 ¼ n
0:56 1:3

0:43 1

� �
ð73Þ
see Eq. (27). The unit vector f describing the phase boundary is given by the equation:
F1f ¼ 0 ð74Þ

In the present case, the unit vector f directed parallel to the phase boundary is found to be equal to
f ¼ ð�0:91; 0:39ÞT ð75Þ
Concluding, two-phase deformations for the present problem may be emerged when the constitutive
parameter a is equal to,
a ¼ 3:442þ da; jdaj � 1; da < 0 ð76Þ
and the shearing k,
k ¼ 2:617� 6:9da jdaj � 1; da < 0 ð77Þ
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Consequently, if the Piola–Kirchhoff traction equals,
t11 ¼ t22 ¼ �3:929þ 76:22da

t12 ¼ 5:234� 13:8da

t21 ¼ 15:52� 240:4da

ð78Þ
and is applied to the specific material, two phase deformations are shown up.
The two phases are defined by the displacement gradient components,
u11 ¼ �0:2272ð�daÞ1=2

u12 ¼ 2:62� 0:5909ð�daÞ1=2

u21 ¼ �0:1953ð�daÞ1=2

u22 ¼ �0:4544ð�daÞ1=2

ð79Þ
The plus sign corresponds to one phase, whereas the minus sign to the other phase. The phase boundary
aligns along the direction of the unit vector (�0.91, 0.39).

Therefore, the discontinuous deformation gradient strain field has completely been defined.
5. Conclusion

A general procedure for the description of two-phase fields in homogeneous deformations in finite elas-
ticity has been proposed. The procedure is based upon singularity theory. It has been found that bifurcation
is a necessary condition for emergence of discontinuous strains in (piece-wise) homogeneous deformations.
Nevertheless it is not sufficient. The deformation gradient jumping compatibility condition restricts the ker-
nel space of the branching problem. Furthermore, globally stable transitions, requiring multiple global min-
ima, are shown up if the cusp condition for the total potential energy density function is satisfied. In fact the
existence of Maxwell�s set, allowing for multiple global minima, require at least the cusp condition for the
total potential energy function. Consequently the branching critical condition should be combined with
the strain jumping and cusp conditions for the emergence of discontinuous strain fields. The present pro-
cedure may be applied to any anisotropic material under any homogeneous deformation. The method
works in three-dimensional problems. The method may be extended including materials with internal
constraints.
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