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Abstract

A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homo-
geneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola—
Kirchhoff stress field in three-dimensional elasticity. Since Maxwell’s sets appear in the neighborhood of singularities
higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant
strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress—strain
laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any
anisotropic material and three-dimensional problems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase deformations in solid materials have recently received much attention. Various models have
been provided (Ericksen, 1991; Truskinovsky and Zanzotto, 1996; Knowles and Sternberg, 1978; Abey-
aratne, 1980) for studying the behavior of twinning in crystals (Pitteri and Zanzotto, 2003) austenite—
martensite transformations in certain alloys that occur in shape-memory alloys (Khatchaturyan, 1983)
and ferroelastic materials (Salze, 1990).

Knowles and Sternberg (1978) and Knowles and Sternberg (1977) attribute the emergence of discontin-
uous strain fields to the loss of ellipticity. Furthermore, some conditions have been derived for the devel-
opment of piece-wise homogeneous deformations in compressible materials (Rosakis, 1990; Rosakis and
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Jiang, 1993). Ericksen (1991), adopting globally stable criteria. Fosdick and MacSithigh (1986) have defined
conditions for the emergence of two-phase deformations in incompressible materials. Further, Fosdick and
MacSithigh (1991) study the problem in inextensible materials.

However, following the existing theories, the study of the emergence of stepwise homogeneous strain,
under uniform stress in any anisotropic material, with possible multiple constraints, is a quite hard prob-
lem. In many cases the various problems are reduced to one-dimensional ones with fictitious constitutive
laws. The present work has the ambition to introduce a new technique for the solution of a two-phase prob-
lem of a initially homogeneous deformation using singularity theory. The procedure may be extended to
any anisotropic material with possible existence of incompressibility or inextensibility constraints. The idea
is quite simple.

First the stability of homogeneous deformations is studied and the critical states (Vainberg and Tenogin,
1974; Thompson and Hunt, 1973) are located satisfying a constraint required by a possible jumping of the
displacement gradient (James, 1981; Gurtin, 1983). It turns out that this constraint depends only on the
kernel of the critical state. Classification of the various singularities (Gibson, 1979; Thom, 1975; Zeeman,
1977; Gilmore, 1981) of the total potential energy for homogeneous deformations has already been per-
formed (Lazopoulos and Markatis, 1996). It is well known that globally stable states are developed on
Maxwell’s sets in the neighborhood of the various singularities (Gilmore, 1981). Furthermore Maxwell’s
sets are developed in the neighborhood of singularities higher than the fold. Therefore the existence of a
cusp is a sufficient condition for the emergence of discontinuous strain fields. Using the unfolding in the
neighborhood of the cusp, the discontinuous field is completely defined along with the phase boundary.
The procedure is quite general. Simple formulae will be found. Direct results handily may be derived, using
computerized algebra packs, such as Mathematica (Wolfram, 1996) or Maple. The present method is re-
stricted only to homogeneous deformations anisotropic compressible materials under any kind of suitable
stress traction. No restrictions are imposed upon the material and the constitutive laws either. Conventional
similar problems in incompressible materials with fictitious constitutive laws have been studied by De
Tommasi et al. (2001) and DD’ Ambrosio et al. (2003).

First the one-dimensional (bar) problem is studied, where the two phase strain field under uni-axial
strain is described with the help of Maxwell’s set in the neighborhood of the cusp singularity. Next the
three-dimensional problem is analyzed. The cusp singularity is located, in the class of incremental deforma-
tions satisfying the jumping condition. The corresponding Maxwell’s set helps in defining two global min-
ima describing the piece-wise homogeneous strain field under homogeneous stress.

The theory is implemented in a simple shearing problem of Blatz and Ko (1962) material explaining the
various steps. Although the material for the application is isotropic, the method works for any anisotropic
homogeneous material and three-dimensional problems as well. Similar materials have been invoked by
Knowles and Sternberg (1978, 1977); Mathematica computerized algebra pack, has been applied for deriv-
ing the various formulae and performing the computing as well.

2. Discontinuous strain fields in the one-dimensional case

Ericksen (1991, 1975) introduced the coexistence of phases phenomena in solids, developing globally sta-
ble equilibrium configurations. Adapting, likewise, globally (Maxwell) stability criteria, two-phase equilib-
rium configurations were emerged allowing for continuous displacement but discontinuous strain fields.
Ericksen (1991, 1975), in fact, adopted, non-convex strain energy density function W(u'(x)) for the uni-axial
tension equilibrium deformation of a bar, where u(x) is the axial displacement and (') = %) as usual, see

Fig. 1. Therefore, the potential energy function per unit length of the bar is defined by,

V=mw(x) - o (x) (1)
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u'(x)
Fig. 1. The non-convex stress—strain diagram.

where, o is the first Piola—Kirchhoff axial stress. The variational problem for the functional ¥ in the C° class
of displacements u(x), i.e. continuous displacement with discontinuous strains, is given by,

ow
= 2
C=a (2)

and the corner, Erdmann-Weierstrass condition (Gelfand and Fomin, 1963) at the point x, of
discontinuity,

ow
[a_} 0 (3)
(W —ou]|,, =0 )
where, [.] = (.)|,,, — (-)],, denotes the jumping at the point of discontinuity as usual. Equilibrium Eq. (2)

and the corner conditions, Egs. (3) and (4), reveal non-unique globally stable equilibrium deformations if
the Piola—Kirchhoff stress ¢ reaches a value oy, that is called Maxwell’s, value intersecting the stress—strain
curve and cutting off equal areas A and B, see Fig. 2. Therefore the bar is allowed to develop piece-wise
constant strain fields, exhibiting the coexistence of phases phenomenon; Sometimes the distribution is quite
fine emerging the twinning of crystal phenomena (Ball and James, 1987; Pitteri and Zanzotto, 2003).
Nevertheless just the same problem may be studied in the context of singularity theory. Since the sim-
plest (lowest) singularity including Maxwell’s sets is the cusp catastrophe (Gilmore, 1981) the present dis-
cussion is limited to that singularity. Higher singularities include anyway Maxwell’s sets and may be useful

8 e
=3

- “+ u'(x)

Fig. 2. Maxwell’s stress and strains.
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for many other problems with many (more than two) global minima. Indeed, the total potential energy V' is
expressed in this case by,

V =s*+ as® + bs (5)

Just exploring the control space (a, b) of the cusp singularity, see Fig. 3, the stable regions 4| with unique
minimum of the total energy function are prescribed by the fold curve 4, where multiple local extremals are
shown up. Further, the fold curve is described by the relation,

84> +27h* =0 (6)
This is, also, the critical curve for locally stable transitions. Nevertheless, the set for globally stable tran-

sitions, called Maxwell’s set, is the semi-axis in the control space with a <0, see Fig. 3. In that case equi-
librium states with,

Ry ™)

yield global minima of the total energy function. Consequently, if the strain of the bar is equal to the con-
stant 1, when the extension stress is equal to oo and the stress is increased by do, then the strain changes by
du'(x). Let us assume that the strain energy density function in the neighborhood of the equilibrium state
(ufy, 00) is defined by a cusp unfolding,

W' (x)) = du'(x)4 - aodu'(x)2 + bodu (x) + W (uy) (8)
with ag, by > 0. Consequently Maxwell’s sets will be met in the neighborhood of the cusp if
gy = bo (9)

In this case

du/(x) = :I:\/%

and the two phases are defined by,

u'(x) = uy £ % (10)

Therefore, there are regions of piece-wise constant distributed strain in the bar, sometimes so fine that mac-
roscopically are viewed as a third strain (Ball and James, 1987).

b‘l

Fig. 3. Geometry of the cusp control space.
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3. The cusp condition in compressible homogeneous deformations

The method, presented in the preceding section, will be extended into a three-dimensional case. Indeed,
piece-wise homogeneous deformations, under the action of surface traction, will be studied. Transferring
the simple preceding method into the three-dimensional case is not a simple matter. Two major problems
are shown up in that case. First, the location of the cusp singularities of the total potential energy function
with many independent variables and secondly, the compatibility of the deformation gradients for the
emergence of the jumping for the strain. The interaction of those two factors will be studied below.

Lazopoulos and Markatis (1996), have recently presented the classification of the singularities of the po-
tential energy function for homogeneous deformations of any elastic material with (or without) the inter-
action of any (multiple) constraints. Classification of the simple singularities (cuspoids) will be performed in
the class of deformations, satisfying the deformation gradient jump compatibility conditions. Consider an
anisotropic hyperelastic material under homogeneous deformation defined by the displacement vector,

u= (u,us,u3) (11)
The non-linear strains are expressed by (Green and Atkins, 1970),
ey = 3y + wi + wyitty)) (12)
with u; = %’/ Likewise, the strain energy density W is defined as a function of the strains,
W =W(ey) (13)

Since the deformation is homogeneous, the potential energy density function V is expressed by,

V= Wley) — tiju (14)
where, t;; are the components of the first Piola—Kirchhoff stress tensor T, referred to the unstressed reference
placement (Gurtin, 1981). In addition the deformation gradient is defined by,

Fy=0;+uy (15)
It is evident that the total potential density function ¥ is a function of nine components of the displacement
gradient u;;. Nevertheless, the conservation of rotational momentum requiring,

TF" = FT" (16)
restricts the number of variables from nine to six. In case the system (16) is solvable, it may be solved

for three variables, let us say, u», ,us3», 3 and substituting into the potential energy density function V
we get,

V=V(q,t) =V(Umw,ta), ik=1,...,6, a,b,c,d=1,2,3 (17)
where,
gy =un, Gy =un, q3=uy, q4=Uun, qs=1Uu3, (5= Ux (18a)

and ¢, i=1, ..., 9 with,

th=th, b=ty =13, =ty Is=1U3 =13 =10, =1 l=1In (18b)
Hence,
oV o
VV=Vilgpn) =5 =0, ij=1....6 k=19 (19)
qi

Let us consider a large equilibrium deformation (g%, 7)) satisfying the equilibrium Eq. (19). Recalling the
procedure of small deformations superposed upon large ones, the problem is posed as follows:



3648 K. A. Lazopoulos | International Journal of Solids and Structures 43 (2006) 3643-3655

Perturbing the controlling parameters t;.) so that,

t, =0+ dt, (20)
with |dt,| < 1, find the new equilibrium strains v; of the system with,
q; :q?—i—dqi (21)
in the neighborhood of equilibrium strains q°.
Considering,
o'V
= (22)
aqi@q/ 0
4=q

and following Lazopoulos and Markatis (1996), multiple solutions for the homogeneous deformations may
be located when the critical condition,

detL =0 (23)

Applying principles of branching analysis (Vainberg and Tenogin, 1974; Lazopoulos and Markatis,
1996), the vector dq = (dg;), i=1, ..., 6 may be defined by,

dq = &dx + o(¢) (24)
where, dx is a solution to the linear equation,
Ldx=0 (25)

and ¢ is defined by the higher order terms of the equilibrium equation, Eq. (19). It is denoted that the sin-
gular operator L denotes loss of strong ellipticity of the stability operator, Eq. (22), see Knowles and Stern-
berg (1978) for further details.

Moreover, the followed procedure, up to this point, deals with second order transitions, according to
Landau et al. (1980) classification. In this case no two-phase deformations are allowed. However, incorpo-
ration of the strain jumping conditions introduces additional constraints. Let us point out that the compat-
ibility of the gradient of deformation F jumping condition is expressed by the existence of a unit vector f
with zero jumping deformation, i.e.

[F]- f=(F" —F)-f=0 (26)

Recalling Egs. (15)+(17), (21) and (26) the gradient of deformation for the piece-wise homogeneous
deformation is expressed by,

F* =F, + &*F, (27)

where ¢ and ¢ are ¢ parameters of Eq. (24), defined by the higher order terms of the governing equilib-
rium Eq. (19) and F, corresponding to the gradient of deformation in the large equilibrium placement. Fur-
thermore, F; depends completely on the kernel dx of the operator L, defined by Eq. (22). Indeed,

dx; dxs dxs
Fi=|dy, dx, dxe (28)
dy, dy; dxs

where dy;, i=1,2,3 are linear combinations of dx;, j=1,...,6. That is evident recalling Eq. (16) of the
conservation of the rotational momentum. Thus, the deformation jumping condition, Eq. (26), requires
for two non-zero f vectors (the phase boundary plane),
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dv; _ dxy _ dxs
dJ’1 752756
dn _dv_dx, )
d)’z d)’s dx;

Egs. (29) are the jumping compatibility conditions expressed exclusively by the components of the L oper-
ator. Hence, the existence of a non-zero kernel dx of the operator L, satisfying further the deformation gra-
dient jumping conditions, is a necessary but not sufficient condition for the two-phase deformation.
Recalling the discussion of the emergence of discontinuous strain fields in the one-dimensional case, pre-
sented in the preceding section, two phase deformations will be developed in the neighborhood of the cusp
singularity, since the cusp is the lowest order cuspoid including Maxwell’s sets, required for globally stable
transitions.
The existence of a cusp singularity at a point ¢° requires the following conditions:

e (a) The equilibrium condition:

or
VV = =0 (30)
aqi q°
o (b) The critical condition:
detL=0, or Ldx=0, dx#0. (31)
¢ (c) The cusp condition:
o'V
—————| dx;dx;dx; =0 32
0¢,0¢,0q, q e (32)
which is equivalent to the existence of a six-dimensional vector by, k =1, ..., 6 satisfying the equation,
o'V o'V
———| dxpdx; + by =0 33
090q,0q,p ' 040yl (33)

In this case, the total potential energy density in the neighborhood of the cusp singularity is expressed by,

pos(_dr
I'\ 94:94,04,9q,

62 63 174
4 —
2 \ 0q,0q,0t,

+ c az_V
“\3g,1,

3
dxidxkdx,dxerL

dx; dx by
@ 0q,0q,0q, ’

a

4
d,dod, +——
@ 3¢,0q,0p,
2
dx,dt, +
Oq,0,

q i

d, dx; dub>

q

dx; d.“h) (34)

o

where, 7, is the vector of the forcing (traction) parameters and p, are the constant material parameters.
Thus, the problem has already been reduced to the one-dimensional case and we repeat just the same

procedure as in the preceding chapter. The unfolding in the cusp singularity is given by,

V=8 —a®+byé, ay>0 (35)
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and the two-phase deformation is defined in Maxwell’s set with by =0 and

& = \E (36)

Hence, the deformation gradients are expressed by,
F* =F, + &'F, (37)

Let us recall that the phase boundary is defined by the unit vectors f of Eq. (26). Further, it is proved that
the stress tensor is the same at the two phases. Indeed, the first Piola—Kirchhoff stress tensor is equal to,

ow
T(F) = —
(F) = 5 (38)
Hence,
ow o'W 10w
+ _ 9 ow + 1 242 2
T(F ) - oF £=0 + aFZ Ct:()é Fl +2 aF3 5:05 Fl + O(é ) (39)
Since,
2
de:aVZV Fi =0 (40)
oF” [,
Eq. (53) reveals that
TH =T +0o(&) (41)

Therefore, Eq. (41) covers the equilibrium requirement of the same stress vector at the two phases of the
phase boundary. In addition, the total potential energy density function is the same at both phases, because
on Maxwell’s sets

Vt=v" (42)
Recalling Eq. (14) the Maxwell condition see Gurtin (1983)
Wt —w- =THF" —F) (43)

is revealed.

4. Application

Although the procedure is quite general and may be applied to three-dimensional problems and non-iso-
tropic as well, the present application will be restricted to a plane shear problem. The simple problem has
been selected just to show the various steps of the method with clarity.

The chosen compressible material is a specific (Blatz and Ko, 1962) material with strain energy density
function,

w(l,J) =1f(J)+gl) (44)
where, [; is the first strain invariant and J the determinant of the gradient deformation. Indeed,

I = (1+un)’ + ) +ujy + (1+un)’ (45)

J = {((1 +u11)2 +u%1)(u%2 + (1 + u22)2) — (u%z(l +u11) + uzl(l + Mzz))z}l/z (46)
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with
fWJ)=J7% and g())=al>+bJ > +¢ (47)

Let us notice that no specific difficulty exists in considering any anisotropic strain energy density function.
The procedure is just the same.

Since W(I,,J) has to satisfy zero values and zero stresses at the reference placement, the following rela-
tions are valid, see Knowles and Sternberg (1978).

2/(1) +g(1) = 0

: , , (48)
21(1) + /(1) +¢(1) =0
Hence the function g should be,
4(-1+a)
J=al’+—~——=+2-5 49
gJ) =al” + NV a (49)

The problem of the initial simple shear in the x; direction will be discussed. The emergence of discontinuous
deformation gradients will be exhibited and the piece-wise constant strain field will be described. Recalling
the strain energy density function

_ 4(—1+a)
wi,J)=01LJ*+a)* +—~———+2—5a 50
(I1,J) =1 7 (50)
the simple shear with the strain components,
= = = 0
Uy = Uz = Uy (51)
Upp = k

yields the first Piola—Kirchhoff stress components,

111 = t22 = 461 — 2(2 + k2)
t =2k (52)
ty = 2k(3 — 2a + k*)

Furthermore, the four strain components are not independent. The relations expressing the conservation of
the rotational momentum, Egs. (16), yield,

—k3 — 2(—1 + a)(ulz — u21) + k(—2 +2a + uzz)

uy = —1 4+ (thug + tin(1 + uxp) — tpuyp)/try = 53
11 ( 11421 12( 22) 22 12)/ 21 k(3 _ 24 +k2) ( )

Let us recall the density of the total potential energy for this homogeneous deformation is equal to:
V=W — thun — tipuy — tyuy — tnun (54)

Since the problem of the initial simple shear is discussed, we try to locate the critical point where the oper-
ator L, Eq. (22), becomes singular. Recalling Eq. (54), the total energy density " depends on the three strain
components uy1, Uy, Uy, 1.€.,

V =V (uiz, 21, un) (55)

Since the pre-critical plane shear deformation is described by Eqgs. (51), the post-critical equilibrium path
will be described by,
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up =k +&x
Uy = éXZ (56)
Uy = &x3

where, |¢] < 1. Yet the total potential energy density V(uy,,uo1,u»;) is expanded around the equilibrium
state with strains (u,u1, 42) = (k,0,0). Hence,

2 3 4

V(uya,uzy,uzn) = Vo + &V, + % Vi + % Ve+ % Va+o(eh (57)
The critical strains are defined by the zero second order terms,

V=0 (58)
Furthermore, the cusp condition requires zero third order terms, i.e.,

V.=20 (59)

Likewise, the involved deformation gradient jumping condition, Eq. (29), is expressed in the present case
by,

Uy — (Mlz - k)uzl =0 (60)

Due to conservation of rotational momentum, Eq. (16), u;; depends on the other strain coordinates, Eq.
(58). Hence recalling the expansion of the strains around the critical point, Eqs(56), the jumping of the
strain compatibility condition, Eq. (60), yields,

—Kxx0 — 2(—=14a)(x; —x2)x3 + kz(xl —x2)x3 + k((—=3 + 2a)x1x, er%) =0 (61)

For (xy,x5,x3) define a direction vector, it may be considered x; = 1. In this case Eq. (61) may be solved
with respect to x,,

- —k — 2x) 4 2ax) — k’xy
2 —2a+ K+ 3k, — 2akx; + kox,

(62)

X2

with x3 =1 and x, given by Eq. (62). The solution of Eqgs. (58), (59) yields the critical azandk. The compo-
nent x; is also defined by the solution of the system of Egs. (58) and (59). Using numerical methods with
computerized algebra packs, see Mathematica (Wolfram, 1996) the critical x1,a,k (the x?, a°, k°) satisfying
Egs. (58) and (59) have been found equal to,

X0 =1.30,a° = 3.442, and k* = 2.617 (63)

Let us remind here that (xj, x,, x3) are the components of the kernel incremental deformation gradient cor-
responding to the (u1,,us;, ) components, see Egs. (56).
Recall that the parameter a represents a constitutive parameter, whereas k denotes the shearing. Let us

consider incremental values of the controlling parameters, ¢ and k, i.e.,
a=d"+ 8a

0 (64)

k=k" + 0ok

In addition, the computation of the total potential energy, Eq. (34), in the neighborhood of the cusp sin-
gularity requires the definition of the vector b;i = 1,3 introducing second order expansion terms. In the
present case,

by =143, by=1 (65)
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and the total potential energy density has been computed and has found equal to,
V = 3.718¢" — 0.222dk&* + (1.758a + 0.2528k)¢ = 0 (66)

Consequently, the problem has been reduced to the one-dimensional case that has already been de-
scribed in the Section 2. Applying the procedure on global minimization for the one-dimensional case, glo-
bal minima exist when the ¢ coefficient of the total potential, Eq. (66), becomes zero, i.e.

1.758a + 0.2528k = 0 (67)

because the controlling parameters, in that case, are included in Maxwell’s set.
Therefore, in the increase 6k defined by,

Sk = —6.98a (68)

the equilibrium equation yields,

(cli_g = 14.8728 — 2(0.2228k)¢é =0 (69)
with solutions,

E=0, &==+0.1735k"2 (70)

Recalling Eq. (62), the critical x, may be computed and in fact,

xy = 0.429 (71)
Hence, see Eq. (56),

uy = 0.56¢

up =262+ 1.3¢ (72)

uy = 0.43¢

up =¢

where, ¢ is defined by Eq. (69). Besides, the direction of the phase boundary may be defined by the incre-
mental deformation gradient,

F, — 40.56 1.3} 73)
043 1
see Eq. (27). The unit vector f describing the phase boundary is given by the equation:
Fif=0 (74)
In the present case, the unit vector f directed parallel to the phase boundary is found to be equal to
f=(-0.91,0.39)" (75)

Concluding, two-phase deformations for the present problem may be emerged when the constitutive
parameter « is equal to,

a=3442 4+ 8a, |da| <1, da <0 (76)
and the shearing k,
k=2.617—695a |dal <1, du<0 (77)
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Consequently, if the Piola—Kirchhoff traction equals,

ty =t = —3.929 + 76.226a
f1> = 5.234 — 13.85a (78)
ty; = 15.52 — 240.4%a

and is applied to the specific material, two phase deformations are shown up.
The two phases are defined by the displacement gradient components,

uy = +0.2272(—8q)"?
ups = 2.62 + 0.5909(—8a)'/?
Uz = +0.1953(—8q)"?
Uz = +0.4544(—8q)"?

(79)

The plus sign corresponds to one phase, whereas the minus sign to the other phase. The phase boundary
aligns along the direction of the unit vector (—0.91,0.39).
Therefore, the discontinuous deformation gradient strain field has completely been defined.

5. Conclusion

A general procedure for the description of two-phase fields in homogeneous deformations in finite elas-
ticity has been proposed. The procedure is based upon singularity theory. It has been found that bifurcation
is a necessary condition for emergence of discontinuous strains in (piece-wise) homogeneous deformations.
Nevertheless it is not sufficient. The deformation gradient jumping compatibility condition restricts the ker-
nel space of the branching problem. Furthermore, globally stable transitions, requiring multiple global min-
ima, are shown up if the cusp condition for the total potential energy density function is satisfied. In fact the
existence of Maxwell’s set, allowing for multiple global minima, require at least the cusp condition for the
total potential energy function. Consequently the branching critical condition should be combined with
the strain jumping and cusp conditions for the emergence of discontinuous strain fields. The present pro-
cedure may be applied to any anisotropic material under any homogeneous deformation. The method
works in three-dimensional problems. The method may be extended including materials with internal
constraints.
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